

Effects of Temperature increasing on the N₂O Emission from Intertidal Area along the East China Coast

Dongqi Wang

School of Geographical Sciences, East China Normal University, Shanghai 200241, China

dqwang@geo.ecnu.edu.cn

Why Intertidal Zone?

- Intertidal zones act as the carbon sink to capture the atmospheric carbon---blue carbon.
- Global changes, such as temperature increasing and sea level rising, would affect carbon and nitrogen biogeochemical cycling in this area.

Why Temperature controlling?

Butterbach-Bahl and Dannenmann 2011, Current Opinion in Environmental Sustainability

Why Nitrous Oxide (N₂O) ?

- N₂O contributed amount to 80% of the total radiative forcing with CO₂ and CH₄ altogether (Chapter 8, IPCC 2013), with a **100-year** global warming potential 298 times that of CO₂.
- N₂O increased by 20% from 271 ppb pre-industrial to 324 ppb in 2011. (Chapter 6, IPCC 2013)
- The NO and NO₂ (NO_Y) resulting from N₂O **destroys ozone** (O₃).
- Intertidal zone would be a potential source of N₂O emission because of the activity nitrogen concentration increasing in Estuaries and Coasts.

Study area

- The East China Coast (ECC) has an 1800km long coastline, which stretching across tropical, subtropical and temperate zones.
- Twelve sites at main estuaries along the ECC.

- This research try to investigate how increasing temperature affects the N_2O emissions along the East China Coast using incubation method.
- (1) Does the amount of fluxes tested by incubation method reliable? — YES!
- (2) How does the flooding affects the N_2O flux? UNLIKELY.
- (3) What does the influence of increasing temperature on N_2O flux? **VARIABLE.**
- (4) What is the latitude-temperature pattern of N₂O flux? **INTERESTING.**
- (5) Do we find precise reason for the trend of N₂O flux? **DIFFICULT.**

(1) Does the amount of fluxes tested by incubation method reliable? —— Yes!

Three duplicate samples of each sampling sites.

Continuous incubation temperature of 15°C, 25°C and 35°C.

(1) Does the amount of fluxes tested by incubation method reliable? —— Yes!

←		Period	ı —				Period 2		→.
Start				End	Start				End
6 hou	ırs	6	hours	6 ho	ours	6 ho	ours	6 h	ours
1	1			1	1		1	1	1
Day 1			Day 2					Day 3	
12:00	18:00	24:00	00:00	12:00	18:00	24: 8	<mark>8</mark> 90	12:00	18:00

Artificial seawater (in site salinity and $2\text{mg NO}_3^--N/L$, 0.5mg NH_4^+-N/L)

Regular semi-diurnal tidal flooding pattern.

Sediment

(1) Does the amount of fluxes tested by incubation method reliable?—— Yes!

Advantages:

Large-scale (compared with chamber measurement) Easy to control (like controlling temperature and flooding pattern in this study)

Disadvantages:

It is difficult to simulate a real coastal environment.

Butterbach-Bahl et al, 2013 Phii. Trans. Roy. Soc

(2) How does the flooding affects the N₂O flux? —— UNLIKELY.

(3) What does the influence of increasing temperature on N_2O flux? — VARIABLE.

(3) What does the influence of increasing temperature on N_2O flux? — VARIABLE.

(3) What does the influence of increasing temperature on N_2O flux? — VARIABLE.

(4) What is the latitude-temperature pattern of N_2O flux? —— INTERESTING.

✤ Northern N₂O flux exhibited significant increase with temperature during non-flooding.

(4) What is the latitude-temperature pattern of N_2O flux? —— INTERESTING.

Almost Mid subareas reached the **highest** N_2O flux at **25°C**.

(4) What is the latitude-temperature $_4$ pattern of N₂O flux? — INTERESTING. ³

N₂O flux of South soil exponential decline with increasing temperature during flooding.

(5) Do we find precise reason for the trend of N₂O flux?
 — DIFFICULT.

*Nitrification and coupled nitrification-denitrification drive N_2O evolution across all coastal soils.

(5) Do we find precise reason for the trend of N₂O flux? — DIFFICULT.

\Rightarrow Denitrification also contributes to N₂O emission at 15°C.

(5) Do we find precise reason for the trend of N_2O flux? —— DIFFICULT.

*****Nitrification:

AMO (Ammonia Monooxygenase) catalyze the oxidation of ammonia, which is encoded by **amoA genes** both from archaeal ammonia oxidizers (**AOA**) and bacterial ammonia oxidizers (**AOB**).

*****Denitrification:

Nitrate reductase (NIR) reduce NO_2^-/NO_3^- to N_2O , which encoded by **nirK** gene and **nirS gene** of copper containing nitrite reductases and cytochrome cd_1 nitrate reductases respectively.

Abiotic N₂O production involving extracellular NH₂OH

Liu S 2017, Environmental Science& Technology

(5) Do we find precise reason for the trend of N_2O flux? — DIFFICULT.

✤Methods:

(1) qPCR—the amount of genes
(2)RDA analysis—correlations
between genes with N₂O fluxes

RDA results:

(1)Positive correlation between fluxes at 15°C with AOA-amoA and NirS genes.
(2)Positive correlation between fluxes at 25°C and 35°C with AOB-amoA and nirK genes.

Conclusion

Temperature increasing would stimulate N_2O emission from high latitude intertidal area especially during ebb tide, while would decrease the emission from low latitude.

There is a lots of work to confirm and quantity the effect of environmental factors on N_2O emission, so hard to accurately model it emission under global change.

Thanks!

Any questions?

